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Unsteady electrolysis of a dilute solution of a metal salt made up of two ions in a 
system with vertical electrodes is considered for large values of the Rayleigh and 
Schmidt numbers. The mass transfer at the electrodes is assumed to be related to the 
local charge transfer potential and concentration by a nonlinear Butler-Volmer law. 
Free convection of the electrolyte appears owing to the variation of the concentration 
field. After a short initial period, the electrolyte becomes strongly stratified and the 
motion takes place in boundary layers at the solid boundaries. An approximate model 
equation for the evolution of the stratification is derived by using perturbation theory. 
Predictions from the simplified model are found to be in good agreement with 
numerical solutions of the complete problem. Significant differences compared with 
earlier studies for linear kinetics, i.e. cases in which the electric current density at the 
electrodes is constant, are found. Among other things, for large values of the difference 
A V  in electric potential between the electrodes, most of the dissolved salt eventually 
collects near the bottom of the cell. The concentration in the bulk of the electrolyte is, 
for large values of AV, approximately given by a ninth-order polynomial to be 
compared with a linear behaviour for linear kinetics. 

1. Introduction 
Stratification is of primary importance in almost all large-scale fluid motions that are 

encountered in meteorology and oceanography. Also in many astrophysical appli- 
cations of fluid mechanics, such as the dynamics of stars, stratification exerts a major 
control on the motion of the fluid. In industrial fluid mechanics, stratification is of 
importance in, e.g. the manufacture of camera films, temperature control of rooms and 
solidification of metals. In the majority of the cases mentioned, diffusive effects are 
generally weak almost everywhere in the fluid and the most striking consequence of 
stratification is the so-called blocking effect, which causes the fluid to move 
preferentially on isopycnic surfaces in order to, loosely speaking, minimize potential 
energy. This tendency for the fluid to move along isopycnic surfaces usually leads to 
the formation of boundary layers in the vicinity of solid walls where viscous and 
thermal diffusion is strong enough to upset the control of stratification on the motion. 

A less well-known field of application of fluid mechanics, where stratification affects 
the motion to lowest order, is free convection in electrochemical systems that contain 
a liquid electrolyte. Some technically important examples of such applications are 
refining and electroplating of metals. Another very important application is the lead 
acid battery used in vehicles and for load levelling in industry. 

t Present address: Vattenfall Utveckling AB, Alvkarleby, S-810 70 Sweden. 
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Anode Cathode 

FIGURE 1. Sketch of an electrochemical cell for refining of raw copper. The arrows signify the 
transport of ions owing to diffusion and migration from anode into the electrolyte and from the 
electrolyte into the cathode. Ions are transported from anode to cathode mainly by convection as 
indicated by the closed curve. 

The procedure for purification of raw copper is shown schematically in figure 1. The 
vertical anode is made of raw copper (99.7%), which contains small amounts of 
impurities such as Pb, Ni, Fe, Si, P, As, etc. but also the noble metals, Ag and Au. The 
vertical cathode is made of highly purified copper (99.99%). The electrodes are 
separated by a liquid electrolyte that is an aqueous solution of copper sulphate with 
some sulphuric acid added. The role of the sulphuric acid, which does not participate 
in the electrode reactions, is to reduce the resistivity of the electrolyte and hence reduce 
ohmic losses of the purification process. During electrolysis, the passage of an electric 
current through the cell, which is carried by moving ions, causes copper ions to be 
dissolved into the electrolyte at the anode and deposited onto the cathode. Ions are 
transported from anode to cathode by diffusion that is driven by concentration 
gradients, migration in the electric field and advection due to motion of the electrolyte. 
Small amounts of certain additives in the electrolyte cause precipitation of almost all 
impurities, which then settle at the bottom of the electrochemical cell. In continuously 
operating plants for metal refining, a large number of cells of the kind shown in figure 
1 are coupled in parallel and a very small throughflow is imposed through the cells. 
A general review of the technology of copper refining can be found in the book by Hine 
(1985). 

As -copper ions are dissolved into the electrolyte at the anode, the specific weight of 
the electrolyte will be increased locally. The reverse process at the cathode causes a 
local decrease of the specific weight of the electrolyte. Thus, free convection of the 
electrolyte will take place as indicated in figure I .  The operating conditions of cells for 
commercial purification of copper are such that the Rayleigh number is very large, i.e. 
advective transport dominates strongly over diffusion and migration. This means that 
a stratification will be set up in the cell, see e.g. Walin (1971). In industrial refining of 
copper, the convective motion in the cell is turbulent. A numerical computation of 
turbulent free convection in a closed electrochemical system, under some crude but 
reasonable simplifying assumptions, has been carried out by Ziegler & Evans (1986). 
Simple order-of-magnitude estimates show that the aforementioned weak throughflow 
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will not significantly change the stratification. To the present authors’ knowledge, there 
are no published experimental investigations of the concentration and velocity fields in 
copper refining cells in the range of parameter space encountered in applications. 
Certain engineering aspects of electrolyte circulation in metal refining processes have 
been reviewed by Fukunaka & Kondo (1988). 

Stratification in an electrochemical system such as a cell for metal refining or a lead 
acid battery has two essential effects on the performance of the cell. First, the 
convective motion of the electrolyte, and hence the ionic transport, is in many cases 
controlled by the stratification. Secondly, the transfer of charge from/to the electrodes, 
i.e. the electrode kinetics, depends on the local values of the concentration and the 
electric potential at the interface between electrode and electrolyte. In general, this 
dependence of reaction rate on concentration and potential is nonlinear. For the case 
of laminar motion of the electrolyte in a closed vertical slot, the fist  of these effects was 
investigated theoretically by Bark, Alavyoon & Dahlkild (1992) and experimentally by 
Karlsson, Alavyoon & Eklund (1990) and Eklund et al. (1991). The purpose of the 
present work is to extend the work by Bark et al. (1992) and investigate, by theoretical 
methods, effects of stratification on both convection and electrode kinetics in a closed 
vertical slot. The main reason for undertaking this study is that a fair understanding 
of the case of laminar flow is a necessity for a successful numerical investigation of the 
turbulent case, even though such a study is somewhat remote owing to present 
limitations in computer capacity. Another, definitely more accessible but still very 
relevant, extension of the present work is the generalization to systems with porous 
electrodes that are separated by a liquid electrolyte. One would then have to consider 
transport not only in the electrolyte between the electrodes but also within the 
electrodes. This is the configuration found in lead acid batteries. In order to compute 
discharge of such batteries, concentration effects on the electrode kinetics has to be 
accounted for. For the case of recharging of a lead acid battery, however, it turns out 
that effects of concentration on the kinetics can be ignored and the problem reduces to 
computation of transport within and between the electrodes. A theoretical and 
experimental study of recharging of lead acid batteries has been published by Alavyoon 
et al. (1991). 

In the present work, all thermal effects are neglected. It can be shown that this is 
usually a very good approximation for small electrochemical cells. However, in large 
lead acid batteries, for example, production of heat is often a serious problem. The 
work by Bark et al. (1992) has recently been extended by Alavyoon (1994) to account 
for sources of both mass and heat at the vertical walls. 

It should be pointed out that several of the phenomena considered in the present 
work have been extensively dealt with in the literature on geophysical fluid dynamics 
and heat transfer. For brevity’s sake, however, such analogies are not stressed in detail 
in this work. A reasonably complete discussion of such matters is given in the paper 
by Bark et al. (1992). 

The present paper is organized as follows : $2 gives the mathematical formulation of 
the problem to be considered. By using boundary-layer analysis, a simplified 
mathematical model for the evolution of the concentration field outside the boundary 
layers is derived in $ 3. On the timescale considered, this part of the concentration field 
depends only on the vertical coordinate and time. The number of space coordinates in 
the mathematical problem is thus reduced from two to one and the number of partial 
differential equations to be considered is reduced from five to one, the simplified partial 
differential equation being supplemented with an algebraic equation. Some ap- 
proximate steady solutions of the simplified problem are given in §4. These solutions 
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are shown to be in good agreement with numerical solutions of the full problem 
formulated in $2. Some unsteady solutions of the simplified problem, in a parameter 
regime that is not yet accessible for numerical simulation of the full problem are given 
in $ 5 .  The main conclusions are sumrriarized in $6. 

2. Problem formulation 
The geometry of the closed two-dimensional electrochemical cell to be considered is 

shown in figure 2, where the coordinate system that is used in this paper is defined. The 
height of the cell is 2H and its width 2h. Both electrodes are made of the same metallic 
material, Me, say. The electrolyte is a dilute liquid solution of a salt of the metal Me. 
The metal ions are henceforth labelled as species 1 and the corresponding cations as 
species 2, respectively. The electric potentials of the anode and cathode, relative to an 
arbitrary reference level that need not be specified, are initially the same. The system 
is then in equilibrium and there is no transport of charge or mass. At time t = 0, a 
difference in voltage between the electrodes is applied. For t > 0, the voltage of the 
anode is V, and that of the cathode V,  c 6.  At the electrodes x = kh, the following 
electrochemical reactions will then take place 

Met+ M91+ z1 e-, (1) 

where z1 is the charge number of the metal ions. At the anode (x = -h),  the reaction 
proceeds to the right in formula (l), i.e. metal ions leave the crystal lattice of the 
electrode material and are dissolved in the electrolyte. The reversed reaction takes place 
at the cathode (x = h).  In the system considered, the cations do not thus participate in 
the electrode reactions. The transport of ions between the electrodes will set up 
concentration fields of both species that, in general, are inhomogeneous. As a 
consequence, the specific weight of the electrolyte will vary in space and free convection 
will ensue. However, the rates of the reactions specified by formula (l), in the cases to 
be considered, depend on the local values of the concentrations and the electric 
potential where the reactions take place. Thus, the convective transport of species will 
affect its own cause and the purpose of this paper is to compute this coupling, which 
turns out to be highly nonlinear, for large values of the Rayleigh and Schmidt numbers. 
Before the initial-value problem for the electrolysis is formulated, the pertinent laws for 
transport of charge and mass in the electrolyte have to be stated. 

In electrochemistry, one distinguishes between potentiostatic and galvanostatic 
electrolysis. Potentiostatic electrolysis means that the difference in voltage between 
electrodes is kept at the same value. Galvanostatic electrolysis, on the other hand, 
means that the total electric current that passes the cell is kept constant. For brevity’s 
sake, only the potentiostatic case is considered in the present work. However, the 
galvanostatic case can be dealt with using only minor modifications of the methodology 
that is given in the present paper. 

Under the assumption that concentrations are small, the mass flux & of species i is 
given approximately by the Planck-Nernst law (in this paper, repeated indices do not 
imply Einstein summation) 

(see e.g. Newman 1991, chapter 1). Here ct is the concentration of species i, q5 the 
electric potential in the electrolyte, v = (u, w) the velocity of the electrolyte (as 
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FIGURE 2. Geometry of the electrochemical cell considered in the text 
and definition of coordinate system. 

attention is restricted to dilute solutions, the velocity of the electrolyte can be taken as 
that of the solvent), F Faraday's constant, D, the diffusion constant for species i, R the 
gas constant and T the absolute temperature. The ions are thus transported by 
migration in the electric field, molecular diffusion and advection in the moving 
electrolyte. The electric current density i in the electrolyte is given by Faraday's law, 
which in the case under consideration reads 

(3) 

Making use of the transport laws (2) and (3), the field equations can now be 
formulated. 

Apart from the very thin double layers adjacent to the electrodes, effects of which 
are not explicitly accounted for in the present work, the electrolyte is electrically 
neutral, which may be expressed by the following equation 

(4) 

An equivalent statement of electroneutrality is that the electric current density is non- 
divergent, i.e. 

V . i  = 0. ( 5 )  

Equations (4) and ( 5 )  are thus equivalent. The motion of the electrolyte is to be 
computed from the equation for conservation of momentum, i.e. 

i = F(zl Nl + z2 N2). 

z1 c1 + z ,  c, = 0. 

where the Boussinesq approximation has been made use of. Here po is the density of 
the electrolyte at the (constant) reference concentrations c, = ctO,p the pressure, ai the 
densification coefficient for species i and g the acceleration due to gravity. Liquid 
electrolytes can usually be considered as incompressible. Thus, the velocity field fulfils 
the equation for conservation of volume 

v*v = 0. (7) 
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Since chemical reactions take place only at the interfaces between electrodes and 
electrolyte, the following equations for conservation of species 

(8) 

hold in the electrolyte. The five scalar equations (5)-(8) are, in principle, sufficient for 
the computation of the five unknowns u = (u, w), p, ci and 4. Next, the boundary and 
initial conditions will be formulated. 

For the velocity field u, the no-slip condition is prescribed at the boundaries, i.e. 

ac 
- = - V . Y  ( i  = 1,2), 
at 

u = O  at x = + h , ( z ( < H ,  z = + H , ( x ( < h .  (9) 

As only species 1 takes part in the electrode reactions, the normal component of the 
mass flux vector of species 2 is zero at the electrodes. One must thus prescribe that 

e,-N, = 0 at x = f h ,  121 < H .  (10) 

Because the irreversible reactions at the surfaces? of the electrodes, as specified by 
formula (l), require a supply of power, the electric field is discontinuous at the inter- 
faces between electrodes and electrolyte, i.e. #(h - 0, z,  t) + V, and #( - h + 0, z, t) + V,. 
Stated somewhat differently, one may say that, because e,.i must be continuous 
across the interfaces between the electrolyte and the electrodes, these interfaces act like 
infinitesimally thin sheet resistors. The power loss in these sheet resistors makes up the 
power needed to sustain the reactions specified by formula (1). The magnitudes of these 
jumps of the electric potential, which in the electrochemical literature are called charge 
transfer potentials, are not known a priori but can be related to the local values of the 
concentration of species 1 and the normal component of the electric current density by 
semi-empirical so-called Butler-Volmer laws (see e.g. Newman 1991, chapter 1). In the 
present work, the following simple Butler-Volmer law$ is chosen 

at x = -h,  IzJ < H (anode), 

at x = h, IzI < H (cathode). 

In these expressions, the constants io and y are the exchange current density and the 
transfer coefficient. For simplicity, the value of y will hereinafter be taken as f, which 
is quite a common value for real electrochemical systems. This form of the Butler-Volmer 
law has been successfully used for computation of electrolysis of aqueous solutions of 
CuSO, by, among others, Awakura, Ebata & Kondo (1979). It should be noted that, 
even though only the transport of species 1 contributes to the normal component of the 
electric current density i s  e, at the interfaces between electrodes and electrolyte, the 
transport of both species will, in general, contribute to i in the bulk of the electrolyte. 

t In electrochemistry, the notation ‘surface’ does in this context include the thin (- 1 nm) double 
layer in the electrolyte outside the geometrical surface of the electrode. 

$ In the form of the Butler-Volmer law specified by formulae (1 1)-(12), the equilibrium potential 
at the reference concentration has been subtracted from the electric potential 4. This is just a minor 
formality that leads to some algebraic simplifications but has no physical implications. 
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The top and bottom walls of the cell are assumed to be such that no mass transfer 
takes place there. The appropriate boundary conditions are then 

ez.Nl = ez.N2 = 0 at z = &H,Ixl < h. (1 3) 

(14) 

For a binary electrolyte, the condition (4) of electroneutrality offers some 
mathematical simplifications since the concentration fields are proportional to each 
other. Hence, a new variable c, which is defined as 

= z1 c1 = - z2  c2, (1 5 )  

is introduced whereby only one equation for conservation of mass has to be 
considered. A new reference concentration co is defined in the same way. A convenient 
equation for c is obtained by elimination of 9 between equations (8), whereby one 
obtains that 

The initial conditions for the system of equations (6H8) are 

v(x, 0) = 0, ci(x, 0 )  = ci,, (i = 1,2). 

c 

(16) 
ac 
at 
-+v*VC = DV2c. 

The (positive) quantity D in this equation is defined by the expression 

the so-called ‘salt diffusivity ’ of the electrolyte. For algebraic simplicity, attention is 
restricted, with one exception that will be discussed in $4, to systems with z, = -z2 = 

2, which are the values for, for example, the technically important case of an aqueous 
solution of CuSO,. Results for other values of z,  and z2 can be obtained from those 
given below by simple but somewhat tedious transformations. 

In order to define non-dimensional variables, a concentration scale %‘ must be 
estimated, a matter that is not altogether straightforward. A physically relevant 
concentration scale must, of course, depend on the voltages and 5 of anode and 
cathode, respectively, which are the external control parameters of the system. From 
the Planck-Nernst law (2), the boundary condition (10) and the Butler-Volmer law at 
the anode (1 l), one finds the following relation 

It is reasonable to assume that 

If the difference in electric potential across the cell is large in the sense that 

9 t ( K +  5). 

exp (F( V, - &)/RT) % 1, 

the aforementioned estimate for 9 makes the first term in the bracket in the right-hand 
side of (18) much larger the second one as c/c, is, at most, of order unity. Taking h as 
the relevant lengthscale, one thus obtains the following estimate for the concentration 
scale 

(19) 
hi, 

2FD1 
%? - -exp ((F/RT) (K - K)). 
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This estimate is, of course, not valid for arbitrarily large values of F( V, - CI;)/RT. The 
largest change in concentration to be expected is - c,. In almost all electrochemical 
systems, the so-called limiting current phenomenon appears for a sufficiently large 
difference in voltage between the electrodes (see e.g. Newman 1991, chapter 1). This 
means that the total current becomes independent of the voltage between the electrodes 
and that the concentration at the cathode becomes zero. A physically reasonable upper 
bound on %? is therefore - c,. For small values of F(5- V,)/RT,  concentration 
changes are expected to be small, i.e. c x co. One then finds from (18) that 

As an interpolation formula for %? one may, in view of (19) and (20), which are valid 
for large and small values of I;( V, - K)/RT,  respectively, thus take 

v = rnin{&sinh[$(<- FD, <)],c,}. 

For algebraic simplicity, however, attention is restricted to cases such that ‘3 = c,, i.e. 
the magnitude of the electric current that passes the cell is assumed to be sufficiently 
strong that the change in concentration is of the same order of magnitude as the 
reference concentration. Cases with % < c, can be dealt with in exactly the same way 
with some simple changes in notation. 

Non-dimensional variables, which are denoted by * superscripts, can now be defined 
as 

(22) 
h2 

t = - t* ,  
D 

x = hx*, 

RT 
(q5+XV,+ <),+(V,- K)) = +b*,Y*), i = i,P, 

DV 
h c = c,+wc*, y = --*, 

The * superscripts will be dropped in what follows. In addition to the non-dimensional 
difference in electric potential between the electrodes, i.e. 2 Y ,  the following non- 
dimensional parameters will appear 

The Rayleigh number Ra, the Schmidt number Sc and the aspect ratio X‘ are assumed 
to be large. The choice of lengthscale in the definition of the Rayleigh number is 
discussed in some detail in Bark et al. (1992, p. 669). The range of the parameter r is 
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given by the inequalities -t < < i. r and the parameter K are assumed to be 
quantities of order unity. Both small and large values of the non-dimensional potential 
difference 2 V  will be considered. 

The non-dimensional versions of equations (6), (7) and (16) are 

(28) 

v - v  = 0, (29) 

(30) 

av 
- + Rau. Vv = Sc( - Vp + V 2 v  - cez), 
at 

ac 
at 
-+ Rav.Vc = V2c. 

These equations appear to be sufficient for the computation of t), p and c. However, in 
order to determine these quantities, one must, in view of the boundary conditions (1 1) 
and (12), also compute the electric potential 4. An equation for q5 can be derived from 
formulae (2) and (3) and equation (5) whereby one finds that 

r v . ( l  +C)V++V2C = 0. (31) 
If the second term in this equation is removed, one recovers the well-known 
electrostatic problem for the electric potential in a medium of non-uniform conductivity 
in which charge is transported by electrons. However, in an electrolyte, charge is 
transported by ions that are moving owing to migration and diffusion. (It follows 
directly from (2H4) that advection of the bulk of the electrolyte does not contribute to 
the electric current density.) The physical role of migration, which is signified by the 
first term in equation (31), is to adjust the concentration fields so that electroneutrality 
is ensured. 

The non-dimensional no-slip condition for the velocity field reads 

u = O  at x = + l , l z l < & ' ,  z=+&' , Ix l< l .  (32) 

The boundary conditions (10k(12), can, after some minor manipulations, be written 
in the following form 

(33) 
ac 
ax 
- = - K[e(v-$) - (1 + c) e(+-v)] at x = - 1, IzI < &' (anode), 

a+ l a c  
ax 2ax 

(1 + c)- = -- at x = f 1, IzI < &' (anode, cathode). (35) 

The boundary conditions (13) at the insulated horizontal boundaries can be written as 

ac a+ 
az aZ 

=-- - 0 at z = +&',(XI < I .  - 

The non-dimensional initial conditions, see (14), are 

v(x, 0) = 0, c(x, 0) = 0. (37) 
The formulation of the mathematical problem for the unknowns v, p ,  c and + is now 
complete. Before an approximate method for the solution of this problem is given, 
some of its implications will be discussed. 
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Owing to the condition of electroneutrality and the fact that only species 1 reacts at 
the interfaces of the electrodes and the electrolyte, the net mass flux of species 1 into 
the cell must be zero, which means that the solution must fulfil the constraint 

for all values oft. This constraint means that the net influx of mass (and charge) at the 
anode must always be the same as the net outflux at the cathode. Therefore, it is not 
a priori obvious that a solution to the problem exists. However, at least heuristically, 
one may argue as follows in favour of the existence of a solution: for any reasonably 
well-behaved velocity field v(x,t),  there is certainly a solution c(x,t)  of the 
convective-diffusive equation (30) that fulfils the boundary conditions (33), (34) and 
(36) and the initial condition (37) for any reasonably well-behaved function $(x, t ) .  On 
physical grounds, there is, in a more general problem, no need to impose the constraint 
of mass conservation (38) on the solution c(x, t ) .  Let us assume, for the moment, that 
the concentration field c be known. One then observes that any solution $(x, t )  of 
equation (31), which is a statement of conservation of charge, that fulfils the 
provisionally known boundary conditions (35) and (36) is undetermined up to an 
arbitrary constant. It seems very likely that this constant can be chosen so that the 
boundary conditions (33) and (34) indeed fulfil the constraint (38) for conservation of 
mass. Numerical studies of similar problems for forced convection (see e.g. Newman 
199 1 ,  chapter 2 1, 5 3) support this conclusion. 

Equation (30) may give the false impression that migration and diffusion in a binary 
electrolyte combine into a fictitious diffusive transport at the same rate of both species 
with the salt diffusivity D that is given by formula (17). According to the Planck-Nernst 
law, formula (2), this is, of course, not so. In any case, one can define a non- 
dimensional flux vector N that is associated with the conservation equation (30) as 
follows 

N = Racv - Vc, (39) 
even though, for the present electrochemical problem, this vector has no physical 
meaning. (If migration is absent or if concentration is replaced by temperature, the 
physical meaning of X i s  obvious.) The physical mass fluxes 4 a n d  4 c a n  be expressed 
in terms of N a n d  the non-dimensional electric current density, which, according to 
formulae (2), (3) and (23), (24), is given by the following expression 

One then finds that 

These expressions will be used in the next section. 

3. Approximate theory for large times 
The mathematical problem that was defined in the previous section can be 

considerably simplified by using perturbation methods. A simpler, but from a physical 
and mathematical point of view somewhat similar, problem has been studied in a paper 
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by Bark et al. (1992, hereinafter referred to as I). Those authors considered a case 
where the mass fluxes from the electrodes were assumed to be known constants, which 
is a valid approximation in electrochemical problems if, for example, the electric 
current density is significantly smaller than the so-called limiting current density (see 
e.g. Newman 1991). However, for larger values of the electric current density, one 
must, in general, account for effects of nonlinear electrode kinetics as quantified by the 
Butler-Volmer law that was gwen in the previous section. The development in the 
present paper rests to a large extent on the results obtained in I. 

It was shown in I that, after a short transient phase, a vertical stratification is set up 
in the cell. This stratification is caused by the simple fact that the locally heavy 
electrolyte outside the anode, where metal ions are dissolved into the electrolyte, sinks 
to the bottom of the cell. Near the cathode, the reverse process takes place, i.e. light 
electrolyte rises to the upper region of the cell. As stratification, once established, tends 
to stiffen isopycnic surfaces in the sense that vertical motion is blocked, the velocity and 
concentration fields will have boundary-layer character. 

In the present work, the physical model that was developed in I will be used with the 
modification that the mass flux from the electrodes depends on the solution itself. 
Following the development in I, the small quantity E = Ra-'/' will be used as the 
expansion parameter. The boundary-layer structure of the concentration, electric 
potential and velocity fields, which are shown in figure 3, is the same as that dealt with 
in I. A meaningful perturbation problem results if the velocity field u and the 
concentration field c outside the horizontal boundary layers on the top and bottom 
walls of the cell (see figure 3) are assumed to depend on the following stretched 
variables 

Here 7+ and 7- are boundary-layer coordinates for the buoyancy layers at the vertical 
surfaces of the electrodes. The physical implications of the lengthscales and timescales 
that are defined by (43) will be indicated in a moment. In terms of these stretched 
variables, the following expansions are assumed for c and u 

c = -Y"(,7)+E2[9+(~,7+)+a-(Y,7-)]+ ... , 

?J = (E9[U+(YO, 7+) + u - w ,  7-11, E 6 [ W + V ,  7+) + w - ( Y ,  7-)D + . . . . 
(44) 

(45) 

For the quantities in these expressions,t it is assumed that Y - 1 for all 5 and 7 and 
that {Q+,u+,  w + }  - 1 for 7* - 1. For large values of v+, i.e. in the bulk of the 
electrolyte, {a+, u+, w , }  are transcendentally small. The assumed form of the 
dependence on-e of the solution means that convective transport of mass in the 
buoyancy layers is of the same order of magnitude as the vertical diffusive transport 
and temporal variation of mass in the interior. It should be noted that {a+, u * ,  w + }  
depend on 7 only via Y, whch means that the vertical buoyancy layers, on the slow 
timescale considered, adjust immediately to variations in the concentration field Y 
outside the boundary layers. This follows from the fact that, according to the definition 
(43), during a time interval A7 - 1 diffusive effects are felt over a vertical distance e-l, 
which should be compared with the thickness of the buoyancy layers. The purpose 
of the analysis in this section is to derive an evolution equation for 9. 

t It may be argued that Y should also be expanded in powers of 2'. However, it can be shown that 
Y will enter the final result only to lowest order, a state of affairs that is not obvious from the outset. 
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FIGURE 3. Boundary-layer structure of the non-dimensional problem 
for concentration, electric potential and velocity fields. 

In what follows, the large aspect ratio GY? of the cell is taken to be - e-'. The range 
of [is thus 14 < 6% = 9, say, where 2' - 1. The assumption Z - e-' is motivated by 
the result found in I that, in the steady state, the stratification in the bulk Ic,I/c - e .  A 
stratification of the same strength is expected in the present problem as well. Thus, in 
order to deal with cases such that %' ,., c,,, one should take GY? - e-'. Cases where 
GY? - ew, - 1 < w < 1, for which one would expect %' < c, can be dealt with in a similar 
way.? 

It turns out to be convenient to introduce the following shorthand notation for the 
boundary conditions (33) and (34) for the concentration fields at the electrodes 

(47) 

The sign convention chosen here is such that A, are positive if there is a positive mass 
flux into the electrolyte from the anode or the cathode. If the quantities 9' and A, are 
assumed to be known, one can readily compute approximate expressions 9, and wf 
in terms of A + .  This computation, which is carried out in I for large values of the 
Rayleigh and Schmidt numbers, gives 

ac 
_ -  - A+(c, q5) ax 

at x = 1, la < 9. 

1 
B 

8, + 8- - 2iba(w+ + w-) = - [A+ exp (- B( 1 - i) h,) + A- exp (-/I( 1 - i) h-)] + O(A+ + A-), 

where 

It will be shown later that the last term in (48) can be neglected. 

horizontal boundary layer (see figure 3) i.e. for &' %- E. 

t The theory that is given in the present paper is valid for cells with height larger than the thickest 
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As in I, an equation for Y will be derived by considering the mass balance in a 
section of the cell that is bounded by the electrodes at x = f 1 and the horizontal lines 
c = c and c = c + d c .  The following notation will be used for horizontal averages 

1 

(...) = ... dx. 
-1 

Conservation of species 1 in the aforementioned horizontal strip implies the following 
equation 

where the last term on the right-hand side accounts for the mass flux from the 
electrodes into the electrolyte owing to the electrochemical reactions. All terms in this 
equation are to be expressed in terms of 9. For this purpose, it turns out to be 
convenient to work with the hypothetical mass flux vector N, which is defined by 
formula (39), and the electric current density i. From (10) and (42) one finds the 
following relation 

which, when combined with (41) and the fact that the electric current density i is 
solenoidal, see equation (9, gives 

N - e ,  = Ki-e, at x = f 1, (50) 

Substitution of the relation ( c , )  = - Y + O(s2), which follows from (1 5) and (44), the 
expression (41) for 4 and expression (51) into equation (49) gives the following 
equation 

a 9  1 a 
a7 2ag 

E -  = - - ( (N-e , ) -K( i - e , ) ) .  

The first term on the right-hand side of this equation can be computed from 
expressions (39) and (44x45) whereby one finds that 

a 9  
(.V:e,) = 2 ~ - + + - l  ( w 8 ) .  

ac (53) 

The last term in this expression can be expressed in terms of A ,  - and 9 by using formula 
(48). After a little calculation, one obtains that 

(3-5’4 d 2  ( w 6 )  = ---2(A;+AZ) - . 
4 

Substitution of expressions (53) and (54) into (52) gives 

(54) 

This equation is a generalized version of the equation derived in I. In the problem 
studied in that work, the x-component of the mass flux and hence the electric current 
density was prescribed as (the same) constant value on anode and cathode. Ths means 
that the last term in (55) is exactly zero. Also, it follows from (46) and (47) that A, - are 
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then constants and, of course, that A, = -A_. In the present case, however, i -e ,  varies 
with position on the electrodes and time. At a given height, though, i -e ,  is, under the 
assumptions made, almost equal on anode and cathode, the difference being - E 

according to (51). This difference, effects of which are quantified by the last term in 
(59 ,  will, as is shown below, be significant for the evolution of 9’. As both (i. e,) and 
A ,  depend on Y and 4, one must compute q5 in terms of Y by solving (31) with the 
boundary conditions (35) and (36). Once 4 is known in terms of 9, A, can be 
computed in terms of Y from expressions (33) and (34) and (ice,) from (40), (44) and 
(48). 

Equation (31) can be solved by using standard perturbation theory for boundary- 
layer problems. On the long timescale 7, it is assumed that # can be represented as an 
outer expansion that is valid in the bulk of the electrolyte and as inner expansions in 
the buoyancy layers of the following form 

(56) 4 = 4 0 k  597) + E241(X, 637) + . * .  3 1x1 < 1 - O(E2), I4 < 9 - O ( 4 ,  

4 = $o+(T+y 5 , ~ )  + $ o - ( ~ - y  6 7 )  + W 1 + ( q + ,  Q 7 )  + $ l h  C, 7)19 } (57) 
rl+ - 1710 < z-o(e). 

It is thus assumed that the electric potential outside the buoyancy layers varies not only 
with the ‘slow’ variable 6 but also with x. The dependence on x has to be included in 
order to compute the ohmic variation of the electric potential in the essentially stagnant 
electrolyte outside the boundary layers. Obviously, the problem for 4 in this region will 
be the same as that for the electric potential in a slender solid resistor, whose 
conductivity varies slowly in the vertical direction. It should be noted that in the end 
regions 6 = & [9 - O(E)], the solution will vary with z rather than f;. This matter will be 
taken up later in this section. A detailed discussion of this issue for a very similar 
problem can be found in Kevorkian & Cole (1981, p. 408). 

Substitution of expressions (56) and (57) into (3 1) for the electric potential gives the 
following equations for $o, and $o,, 

The solution of these equations is straightforward as is the matching of the outer 
expansion to the inner expansions. After some algebra, one obtains the following 
uniformly valid expansion 

In this expansion, @o,l are functions that have to be determined from the boundary 
conditions whereas @2,3 need not be determined to the order considered. However, 
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because e , - V 6  - c2, the last term in expression (62), which accounts for effects on the 
electric potential of the concentration fields in the buoyancy layers, will turn out to give 
a contribution to lowest order. 

The following useful relation is obtained from substitution of expressions (62) and 
(44) into boundary conditions (35) 

Combination of (33, 34), (44) and (62, 63) leads to the following system of 
transcendental equations for Go, , 

2q1-9) 
(r+ 2) @, = - ~ [ e x p  (Y - Go + G,) - (1 - 9’) exp (Q0 - G1 - Y ) ] ,  (64) 

This system has the following solution for Go 

Go = -fln(l-Y),  

whereas GI has to be computed in terms of 9 as the solution of the following 
transcendental equation 

K(r+2) sinh (Gl + Y ) .  r( 1 - 9y G1 = - 

The last term in equation (55) can now be computed in terms of 9’ from formulae (40), 
(U), (62) and (66) with the following result 

2417- 2) a 9  
K(r+2) ag’ (i-e,) = - 

It remains for us to determine the quantities A, in (55). From (33)-(34), (46H47) and 
(62H65) the following approximate expressions are obtained 

2r(1-9) 
(r+ 2) G1 + O(€). A, = -A-+O(€)  = 

The correction terms, which were discussed in the paragraph following (59, are not 
needed to the order considered. 

Substitution of (68) and (69) into (55) gives the following equation that contains 9’ 
only 

where @,(Y) is to be computed in terms of 9’ from (67). In general, the latter 
computation has to be carried out by using numerical methods. For steady electrolysis, 
however, it turns out to be possible to obtain approximate analytic solutions for large 
and small values of Y .  Such solutions are given in the next section. 

It should be pointed out that (70) can, of course, also be obtained by consideration 
of the mass balance for species 2. In fact, that derivation is, although not simple, 
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somewhat simpler than the derivation that is given above. The present derivation, 
though, is a bit more instructive since one has to consider the flux of mass from the 
electrodes into the control volume. There is one important observation about (70) that 
should be pointed out. The physical significance of the right-hand side of the equation 
is evident from its primitive form (49). However, it follows directly from the 
electroneutrality condition that one can also write (70) as follows 

This observation will be made use of in what follows. 
Next, boundary and initial conditions have to be formulated for the parabolic 

equation that is defined by (67) and (70). For a satisfactory derivation of boundary 
conditions, one would have to consider the end regions g = k 19- O ( E ) ~ ,  where the 
assumption of a slow variation of the solution with the vertical coordinate z breaks 
down. The situation is further complicated by the circumstance that one would also 
have to consider the nested horizontal boundary layers of thicknesses e and e4I3, 
respectively. (The complicated structure of these boundary layers was briefly discussed 
in Appendix A in I.) It is therefore evident that the two boundary conditions needed 
have to be formulated on an ad hoc basis. For this purpose, one may use the following 
argument: since species 2 does not take part in the electrode reactions and there is no 
mass transfer of any species at the top and bottom walls, it appears reasonable, from 
a physical point of view, to assume that there is no net flux of species 2 into the end 
regions at any time 7. This hypothesis will be used as the boundary condition in the 
present work. (In Appendix A of I, it was demonstrated, using a plausible but not 
altogether satisfactory mathematical analogy between the Stewartson E’14-layer in the 
theory of rotating fluids (see e.g. Greenspan 1991, chapter 2, 0 18) and the horizontal 
€-layer in the present work, that this boundary condition is a reasonable one for the 
simpler problem dealt with in that work.) Also, this boundary condition will be 
prescribed at 6 = +Y, which may possibly introduce a small error, presumably of 
order E ,  in the final result. Rearranging the terms in the bracket [. . .] in (70), one arrives 
at the following boundary condition 

which will be used for the solution 9 of (70) and (67). 
Because there is no solution available on the short timescale h2/D to be used as a 

matching condition for the solution on the long timescale E2h2/D, see (22) and (43), the 
initial condition for the solution of (70) and (67) also has to be formulated on an ad 
hoc basis. The same problem was encountered in I and the same remedy, which was 
discussed at length in I, will be used in the present work. It turns out that the solution 
is very insensitive to the details of the initial condition. The reason is that the 
‘diffusivity’ in (70) is very large for the small values of a 9 / a g  that appear for small 
values of 7. A simple order of magnitude estimate shows that the ‘diffusivity’ in (70) 
is - Yp9/4. Thus, one may start the integration at 7 = 0 and as initial condition use 
almost any function that is of small magnitude and that fulfils (71). The following 
function was successfully used in I (see figure 3 of I) 
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FIGURE 4. (a) The vertical variation of the concentration field in the midsection of the cell. -, 
approximate theory; ---, numerical solution of the full problem. (b) The horizontal variation of the 
vertical velocity component at midheight of the cell: -, present approximate theory; 0 ,  numerical 
solution of the full problem. (c) The horizontal variation of the concentration field at midheight of 
the cell: -, present approximate theory; 0 ,  numerical solution of the full problem. .@ = 5, Ra = 
174000, r = - 10.3, = 0.0701, Y = 2.7s. 

where 8, and 8, are two small numbers that can be chosen quite arbitrarily and Yps is 
a number that is determined so that (71) and (67) are fulfilled. This kind of initial 
condition is also used in the present work. 

So far, no comparison between predictions of the simplified model derived in this 
section and experimental data has been made. However, numerical solutions of the 
complete mathematical problem that was formulated in 92 have been computed by 
Alavyoon & Bark (1993). Values of physical constants used in the numerical examples 
discussed in this work are given in Appendix A. Figure 4 shows comparisons between 
a numerical solution of the complete problem, which has been integrated in time up to 
a state that is, within a very small error, steady, and the corresponding steady 
approximative solution computed according to the theory developed in this section. 
The value of Y is here 2.75, which is too small for effects of nonlinear reaction kinetics 
to be strong. However, in the numerical computations of solutions of the complete 
problem, serious numerical difficulties were encountered for larger values of -Ir. Figure 
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FIGURE 5 .  Variation of the electric current density on the electrodes at steady state as predicted by 
the approximate theory for values of Y = 1, 2, 3, 4, 5 ,  6, 7. The parameter values are the same as in 
figure 4. 

4(a) shows the vertical variation of the concentration in the midsection of the cell. The 
agreement between the two solutions is surprisingly good in view of the fact that the 
perturbation parameter E is not very small (x 0.3). As expected, the deviation is largest 
near the top and bottom of the cell, where the approximate solution for the electric 
potential is invalid. Some differences compared with the case with constant current 
densities on the electrodes that was considered in I can be inferred from figure 4(a). The 
vertical concentration profile is slightly bent rather than being a straight line as was 
found in I. The stratification is also somewhat asymmetric with respect to the origin 
which was not the case for the solution that was given in I. Figures 4(b) and 4(c) show 
comparisons for the horizontal variation of the vertical velocity component and the 
concentration at midheight of the cell. Also in these figures the agreement between the 
two solutions is satisfactory. 

A quantity of significant interest from the engineering point of view is the 
distribution of the normal component of the electric current density on the electrodes. 
From the approximate theory that is given in this section, according to which the 
current densities on anode and cathode are equal to lowest order, the distribution in 
the steady state is shown in figure 5. This graph shows clearly how the increased 
conductivity at the bottom of the cell, which is caused by the stratification, for 
increasing values of V leads to a successively more non-uniform distribution of the 
current density. 

Before some unsteady numerical solutions of the simplified approximate problem 
are discussed, some simple analytic steady solutions for large and small differences in 
voltage between the electrodes will be given in the next section. 

4. Approximate steady solutions for large and small values of “Ir 
For the steady case, an equation for 9 can be obtained from (70), which can be 

integrated directly once with respect to c. However, one may save some algebra by 
making use of the observation that, in the steady state, there is no net mass flux of 
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species 2 across any horizontal cross-section of the cell. Thus, the boundary condition 
(71), which in the unsteady case implies that there is no net mass flux of species 2 into 
the end regions at c k 9 ,  will, in the steady case, hold for all values of g. One thus 
obtains the following first-order ordinary differential equation for Y 

The solution of this equation has to fulfil the requirement of global conservation of 
mass, which in terms of Y is expressed as follows 

Ydg  = 0. 51, (75) 

In the first part of this section, an approximate solution for large values of 9'- will be 
computed. For notational convenience, two additional parameters a and x, which are 
defined as 

will be used in the following analysis. u is assumed to be of order unity whereas x, in 
the first part of this section, is taken to be large. 

For large values of V ,  one obtains, by iteration, the following approximate solution 
of equation (67) for B1 in terms of Y 

Bl = - V + arcsinh [a(l -Y)ll2 9'-] + . .. . (77) 

This result shows that, to lowest order, the difference in electric potential in the 
electrolyte between points just outside the electrodes is approximately equal to the 
difference in electric potential between the electrodes. The second term in expression 
(77) signifies a relatively small modification owing to the presence of the charge transfer 
potentials. 

In order to proceed, it turns out to be suitable to define a new spatial coordinate 5, 
which is defined as 

Substitution of (77) into (74) gives an approximate differential equation for Y 

E = xQ 151 < &? = xy. (78) 

d Y  8 - = (1 - 9')8/g (1 --arcsinh [cr(l- Y)'/' 9'-] + . 
d5 9g v , .) * (79) 

An approximate solution of this equation is obtained by iteration. One finds that 

where Eo is a constant of integration that is to be determined from the constraint (75). 
This may be done by regular perturbation. For this purpose, Eo is written as 

6, = Eo++Eo+..., 

where Eo is determined so that the lowest-order part of the solution (80) fulfils the 
constraint (75) and +Eo.so that the constraint is fulfilled for both terms in (80). Before 
an equation for So is derived, a comment on the solution (80) should be made. It is 
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obvious from the lowest-order part of this expression that both the condition of 
positive concentration, i.e. Y < 1, cf. (44), and the condition of hydrostatic stability, 
i.e. % 2 0, require that Zo 2 d. 

Combination of (75) and (80) gives, to lowest order, the following equation for So 

(81) 

It can be shown that, in order for a real solution Eo 2 d of this equation to exist, there 
is an upper bound on d 

(82) 

The proof of this inequality is quite simple but a little tedious and is therefore not given 
here. For a given value of Y this means that, according to the definitions (76) and (78), 
Y is bounded from above by the constraint 

(d +=,,)lo - (d - ZO)lo = 20 x 9’ d. 

d G dmuz = ;X 10119. 

If this inequality is violated, the physical basis for the approximate theory developed 
in the first part of this section breaks down. More will be said about this in a moment. 

In general, the algebraic equation (81) has to be solved by numerical methods. 
However, for the special case in which the value for d is chosen as the upper bound 
dmaz in inequality (82), one can proceed a bit further by using analytic methods. The 
price to be paid for this choice of d is that one is then considering an electrochemical 
cell, whose aspect ratio depends on the difference in voltage between the electrodes. 
However, in spite of this limitation, some interesting properties of the solution can be 
inferred from this special case. 

For d = 4,, one finds that 
(84) 

- 
do = dmaz. 

The lowest-order solution for Y can then be written in the following form 

This solution is invalid at E = dmuz. The reason is that 8 = 0 at this point. This implies 
that (48), which is the basis for the derivation of (70), breaks down locally. In physical 
terms, this failure comes from the fact that the buoyancy layers become infinitely thick 
at f ;  = dm,,. However, this is not a very serious shortcoming as it can be shown that 
the validity of (48) requires that % 9 h, which is not a very severe restriction. In fact, 
it can be shown that the region where (48) is invalid is of order 4118~-118~.  Furthermore, 
for the mass transfer in the electrochemical cell, the upper part of the cell is almost 
passive as concentration and conductivity are there very small. This means that the 
poor representation of the solution in a limited region near the top of the cell is of no 
practical importance. 

For values of Y that are larger than the upper bound that is given by expression (83), 
there is certainly a steady solution of the problem that is formulated in $2, However, 
its structure will most likely be significantly different from that discussed above. The 
results discussed above indicate that the dissolved salt will collect in a narrow, strongly 
stratified region near the bottom of the cell. Above this region, the concentration is 
probably very small and the motion of the fluid can be expected to be similar to that 
of a homogeneous fluid at low Reynolds number. However, this matter will not be 
pursued further in this work. 
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c 

FIGURE 6 .  Comparison between the approximate steady solution for the bulk concentration 
c(c,7) = -9' and its asymptotic approximation for large values of Y for V = 10, Ra = 40000, 
K = 0.281, r = -34.2. -, numerical solution of equation (74). ---, formula (80). 

The computation of &To from expression (80) and the constraint (75) just requires 
standard manipulations and details are therefore omitted. After a little algebra, one 
arrives at the following expression 

An asymptotic expansion of the integral that appears in this expression is computed in 
Appendix B, where it is shown that, for large values of the number X ,  

xllls arcsinh x dx = &[X 20/9 In X - & X 20/8 + gX + O(1)l. r 
Collecting results from (go), (84)-(86) then gives the following approximate expression 
for Y 

&g -( e/'Z 
[In BY +iln 40 -&] -- arcsinh(oY[ "y ] )d(}+ .... (87) I,, 

It is obvious that the accuracy of this approximate formula deteriorates for large values 
of the parameter B. For the geometries that are considered in this work, this turns out 
to be the case for the system under consideration, i.e. ICu(s)l CuSO,(aq) ICu(s)l, because 
the exchange current density i ,  for this system is very small, see formulae (27) and (76) 
and the numerical values of physical constants given in Appendix. Therefore, in order 
to compare formula (87) and a numerical solution of the problem defined by (74) and 
the constraint (75), the system IAg(s)l AgNO,(sq) IAg(s)l was chosen. The comparison 
is shown in figure 6. As can be seen from this graph, the approximate formula is quite 
accurate. 
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A relation of fundamental interest in electrochemistry is the so-called polarization 
curve, which is the relation between the total current 9, say, that is passing through 
the electrochemical cell and the difference in voltage between the electrodes, which is 
here measured by half its value, i.e. Y .  For algebraic simplicity, only the lowest-order 
expression for the polarization curve is given in this work. It is a very fortunate 
circumstance that this relation turns out to be independent of &, and can thus be 
computed for any value of Y being subject to the upper bound (83) without having to 
solve equation (81). The normal component of the local electric current density on the 
anode, which is approximately the same as that on the cathode, can be computed in 
terms of Y from formulae (40), (44), (48) and (62t(63) whereby one finds that 

Thus, to lowest order, the distribution of the normal component of the electric current 
density on the electrodes is proportional to the concentration outside the buoyancy 
layers. In view of (77), which says that the charge transfer potentials are of minor 
importance for large values of Y ,  this result has a simple explanation. As the difference 
in electric potential per unit length in the horizontal direction is - - Y everywhere in 
the electrolyte, the strength of the electric density will be determined by the local value 
of the conductivity, which is proportional to the concentration. It is a bit surprising, 
though, that (88) holds for any value of 9". 

Integration of expression (88) and making use of the constraint (75) gives the 
expression for the polarization curve 

This formula is of limited practical value since the aspect ratio of the electrochemical 
cell depends on the applied voltage. However, it can be shown that the relation 
U / d T  - Y - l I 2  holds also for a fixed value of 9'. Thus, the electrochemical system 
that is considered in this work is somewhat unusual in the sense that the electric 
current density does not seem to approach a limiting value as the voltage between 
the electrodes becomes large, at least not for the range of applied voltage for which the 
theory is valid. The reason for this is quite simple. Because the system is closed and 
mass is conserved, the hydrostatic pressure outside the buoyancy layers prevents 
complete depletion of dissolved salt at all parts of the vertical cathode. 

Another important integral measure of the operation of electrochemical systems is 
the Sherwood number, i.e. the ratio between the total mass transfer with and without 
convection but accounting for diffusion, migration and nonlinear electrode kinetics in 
both cases. (The case without convection can be realized experimentally with 
horizontal electrodes with the cathode above the anode.) As there is only mass transfer 
of species 1 and this is the only species carrying electric charge, the Sherwood number 
is, for the system considered, equal to the ratio between the total currents in the two 
cases. The exact solution for the polarization curve in the case of a stagnant electrolyte 
has recently been given by Sokirko & Bark (1993). Taking the two first terms of the 
asymptotic expansion for Y % 1 of the expression for the polarization curve given by 
those authors, one finds that 

+ ... . 2514 ry 112 2ewZv 
15(r+ 2) (' + ((9 + 8 ~ ~ ) ) ' ~ ~  - 3)'12 

Sh = 
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The second limiting case to be considered is V < 1, which offers considerably 
simpler mathematics compared to the previous case. To lowest order, this limit is 
similar to the case considered in I. In the present work, the results given in I are 
extended into the regime of slightly nonlinear electrode kinetics. The computation of 
Y(fn and 9 can be carried out by regular perturbation and the results are 

The Sherwood number in this limit is simply computed by dividing this expression 
for 9 by the following approximate expression for the total current 9' in the case 
without convection 

which is obtained from the lowest-order approximation of the solution given by 
Sokirko & Bark (1993). 

The measurements of velocity by Karlsson et al. (1990) and of concentration by 
Eklund et al. (1991) in a small copper sulphate cell could be predicted quite well in I 
under the assumption that the electric current density on the surfaces of the electrodes 
is constant. However, it should be pointed out that the value of -Ir in those experiments 
was not small. Typical values for the dimensional mean current density were 50 and 
100 A m-2. As the current density is non-dimensionalized with the exchange current 
density i,, see (23), whose value is of order 1 A m-2 for the copper sulphate cell (see 
Appendix A), figure 5 shows that, in the aforementioned experiments, there was a 
significant variation of the current density on the electrodes. Thus, the theoretical 
predictions in I were to some extent fortuitous. For example, the dimensional 
stratification, i.e. %%/h, which was measured by Eklund et al. (1991), it can be shown 
that its dependence on the local (dimensional) current density i -e ,  at the electrodes is 
of the form %%/h - (i, i-eJ1/'. Thus, the deviation from linearity of the stratification 
depends very weakly on the current density on the electrodes and the measured almost 
linear stratification appeared to be due a constant current density on the electrodes. As 
for the dimensional vertical component of the velocity field in the buoyancy layers, 
which was measured by Karlsson et al. (1990), the corresponding dependence is found 
to be - (i,, i .  eJ1I3, which is also quite weak and explains the good agreement between 
theory and experiments. 

5. Unsteady electrolysis 
The simplified unsteady problem, which was defined in the previous section by (67) 

and (70) with the initial condition (72), (73) and the boundary conditions (71), has been 
solved numerically for values of V that are too large for successful numerical 
integration of the complete problem. The evolution of Y for Y = 4 is shown in figure 
7. As pointed out in $3, the unsteady solution is, strictly speaking, valid only for 7 - 
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FIGURE 7. Evolution of the bulk concentration c ( ~ , T )  according to the approximate theory for 
V = 5, Ra = 174000, K = 0.0701, r = - 10.3. The values O f  T for the curves in the graph are 0, 0.1, 
0.3, 0.6, 1, 5 .  

1, which, for the case shown in the graph, would correspond to t > 3. However, as in 
the case dealt with in I, numerical experiments indicate that the solution is valid for t - 1 or even smaller. Two observations can be made from this figure. First, the response 
of the system for small values of t < 1, for which the solution may not be a very good 
approximation, is quite rapid. As was discussed in some detail in I, this is due to the 
fact that the strength of the stratification increases with time. Thus, the suction into the 
divergent buoyancy layers, which control the evolution of the stratification in very 
much the same way as the Ekman-layer suction controls the spin-up of a rotating fluid 
(see e.g. Veronis 1970) decreases with time. Secondly, the variation with time of the 
stratification is larger in the lower part of the cell than in the upper part. This effect is 
due to the larger electric current density near the bottom, which is a consequence of the 
vertical variation of conductivity (cf. expression (88)). 

6. Conclusions 
Potentiostatic unsteady electrolysis of a dilute liquid solution of a metal salt in a cell 

with vertical electrodes has been considered for large Rayleigh and Schmidt numbers 
with particular emphasis on effects of reaction kinetics on mass transport and 
convective motion of the electrolyte. A simplified but accurate theory has been derived 
by using perturbation methods. Results from the simplified theory are in good 
agreement with numerical solutions of the complete problem. 

It was shown that a strong stratification of the electrolyte and buoyancy layers on 
the electrodes appear after a short initial period. The stratification evolves on a long 
timescale - Ra-2/sh2 / D ,  where Ra is the Rayleigh number, h half the distance between 
the electrodes and D the salt diffusivity. During this process, the net advective transport 
in the vertical buoyancy layers is of the same order of magnitude as that of the vertical 
diffusion in the practically stagnant interior. The system approaches a steady state, in 
which the stratification, in the general case, is nonlinear. This is in contrast to cases 
where the electric current density on the electrodes is approximately constant for which 
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it was shown by Bark et al. (1992) that the steady stratification is linear. The deviation 
from linearity of the steady stratification increases with increasing values of the 
different A V in voltage between the electrodes. 

The horizontal component of the electric current density on the electrodes is, except 
for small values of AV, non-uniform. Its value decreases monotonically with the 
vertical distance from the bottom of the cell. This is a consequence of the stratification 
of the electrolyte. The electric current prefers to flow in regions of large conductivity, 
i.e. where the concentration is large. 

Finally, it has been demonstrated that the major part of the ionic transport outside 
the boundary layers is made up by horizontal migration. In the buoyancy layers, 
however, horizontal transport due to diffusion and migration are of the same order of 
magnitude. 
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Appendix A. Values of physical constants 
In this Appendix, the values of electrochemical constants that are used in the 

numerical examples are given. All data are for 25 "C. 
For the copper sulphate solution, the concentration chosen was c, = 0.1 mol 1-1 and 

the dimensions of the cell were h = 1 mm and H = 5 mm. The value of the exchange 
current density i, varies significantly in the literature. Experiments that were carried 
out by Alavyoon showed that the value i, = 1 A mT2, which is of the same order of 
magnitude as reported elsewhere (see e.g. Tanaka & Tamamushi 1964), is a reasonable 
estimate. For the remaining constants, the following values were used 

01 = 0.1678 1 mol-' (Landolt-Bornstein 1967), 

v = 1.1 x m2 s-' (Lobo 1989), 

D ,  = 0.72 x lo-', D, = 1.065 x lo-' m2 s-' (Newman 1991). 

These constants lead to the following values of the non-dimensional parameters 

Ra = 1.74 x lo5, Sc = 1.28 x lo3, K = 7 x lo-', r= - 10.3, &' = 5 .  

The concentration of the silver nitrate solution was taken as c, = 0.6 moll-'. The 
width of the cell was chosen as 2 mm and the aspect ratio is specified by formulae (76) 
and (78) and the quantity a&,, as given by (82). The values of the electrochemical 
constants for the system were 

i, = 100 A mP2 (Bard 1978), 

a = 0.1336 1 mol-l, (Landolt-Bornstein 1967), 

v = 0.9005 x m2 s-' (Lobo 1989), 

D, = 1.902 x lo-' m2 s-' D ,  = 1.648 x (Newman 1991). 
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A 

FIGURE 8. Path of integration. 

From these constants, one finds values of the non-dimensional parameters as follows 

Ra = 0.989 x lo6, Sc = 1.02 x lo3, K = 0.26, f = -28.0. 

Appendix B. Evaluation of the integral in formula (86) 

following identity 
In order to evaluate the integral (86) for large values of X ,  one may make use of the 

xl1/' arcsinh x dx = $, X lu9 [arcsinh X - (1 + X 2)1/2] x2l9 (1 + x2)l/2 dx 

The integral on the right-hand side may be evaluated by integration along the path 
shown in figure 8 and using Cauchy's theorem. The contributions from the small 
circular paths around the branch points at z = 0, z = f i vanish. If the contribution 
from a path labelled k in figure 8 is denoted by Z k ,  one finds, after some simple 
computations, that 

Zl + Z, = (1 - exp (4in/9)) x2/' (1 + x ~ ) ' / ~  dx, 1 
k-7 

Zk = - 2i (exp (in/9) + exp (in/3)) 
k=4 

Summation of these expressions leads to the following result 
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FIGURE 9. Comparison between numerical evaluation of the integral f = I,” x * / ~ (  1 + x2)l/* dx and 

its asymptotic approximation given by formula (95) as function of X .  

The last term on the right-hand side of this expression has to be evaluated numerically. 
Its value is 1.802951068 ... . Substitution of (95) into (94) leads to (86). The accuracy 
of formula (95) is, as can be seen from figure 9, very good. 
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